Final Review

1. (10 points) Find the general solution of

$$
\begin{aligned}
x+2 y+z & =1 \\
-x-2 y+z & =2 \\
2 x+4 y+2 z & =2
\end{aligned}
$$

2. Find the inverse and the determinant of $A=\left[\begin{array}{ccc}-6 & 2 & -2 \\ 2 & -2 & 0 \\ -2 & 0 & 2\end{array}\right]$
3. Suppose A is a 3×3 invertible matrix and $A^{-1}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 3 & 5 & 2 \\ 1 & 0 & 3\end{array}\right]$.
(a) Solve the system of equations $A X=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
(b) Solve the system of equations $A^{T} X=\left[\begin{array}{c}2008 \\ 1 \\ 0\end{array}\right]$
4. Suppose A and B are 4×4 matrices. If $\operatorname{det}(A)=-2$ and $\operatorname{det}(B)=3$ find
(a) $\operatorname{det}\left(3 A^{-1} \cdot B^{-1}\right)$
(b) $\operatorname{det}\left(A^{2} .4 B^{-1}\right)$
(c) $\operatorname{det}(\operatorname{adj}(A))$
5. Suppose A is a 2×2 invertible matrix. If the row operation $-2 R_{1}+R_{2} \rightarrow$ R_{2} and then the row operation $-R_{2}+R_{1} \rightarrow R_{1}$ is performed on A, it becomes the identity matrix.
(a) Find two elementary matrices E_{1} and E_{2} such that $E_{2} E_{1} A=I_{2 \times 2}$.
(b) Write A as a product of elementary matrices. [Hint: Use (a)]
(c) Write A^{-1} as a product of elementary matrices. [Hint: Use (a)]
6. (10 points) For which values of x (if any) is the matrix $\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & x & 2 \\ 3 & -10 & x\end{array}\right)$ singular (not invertible)?
7. (12 points) Express

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 4 & 0 \\
3 & 0 & 4
\end{array}\right)
$$

as a product of elementary matrices.
8. Find a basis for the subspace of R^{4} spanned by

$$
\{(2,9,-2,53),(-3,2,3,-2),(8,-3,-8,17),(0,-3,0,15)\}
$$

9. Let $A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 2 & 1 \\ 2 & -6 & 4\end{array}\right]$, find
(a) the rank of the matrix
(b) a basis for $\operatorname{Nul}(A)$.
(c) a basis of the row space of A.
(d) a basis for the column space of A.
10. Suppose $A=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 3 & 5 & 2 & 3 \\ 1 & 0 & 3 & 2\end{array}\right]$ and echelon form of A is $\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(a) Find a basis for the column space of A.
(b) Find the nullity of A.
(c) Find a basis for the row space of A.
11. (12 points) Which of the following are subspaces of the given vector space V ? Justify your answers.
(a) $V=R^{3}, S=\{(x, y, 0): x+y=0\}$.
(b) $V=R^{3}, S=\{(x, y, 0): x y \geq 0\}$.
(c) $V=R^{2 \times 2}, S=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right.$: All matrices in V where $\left.a b c=0\right\}$
12. (10 points) Find a Basis for each of the following subspaces S of the given vector space V.
(a) $V=R^{2 \times 2}, S=\left\{\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)\right.$: All matrices in V where $\left.a+b-c=0\right\}$
(b) $V=P_{2}, S=\left\{p(x)\right.$ is in P_{2} and $\left.p(1)=0\right\}$
13. (12 points)Determine whether the following sets of vectors are linearly independent in the vector space V. Justify your answers.
(a) $V=R^{3}, v_{1}=(1,0,0), v_{2}=(1,1,1), v_{3}=(2,2,3)$.
(b) $V=P_{3}, p_{1}(x)=x^{2}+x-1, p_{2}(x)=1-x^{2}, p_{3}(x)=x$
14. (10 points) Let T be the linear transformation from R^{2} to R^{2} given by $T(a, b)=(a-b, 2 b+a)$.
(a) Find the standard matrix representation of T.
(b) Find $T^{-1}(x, y)$ if T^{-1} exists.
15. (14 points) Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

(a) Find the characteristic Polynomial of A.
(b) Hence find the Eigenvalues of A.
(c) For each Eigenvalue of A, find a basis of the corresponding Eigenspace.
(d) Decide if A is diagonalizable or not. Justify your answer. If yes, give an invertible matrix P and a diagonal matrix D such that $P D P^{-1}=$ A.
16. (10 points) Consider the vectors $u=(a-1,1, b), v=(2, a,-1)$ and $w=(3, a+b, 2)$ in R^{3}. Find all values of a and b that make u orthogonal to both v and w.
17. Let $u_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$, and $x=\left[\begin{array}{c}8 \\ -4 \\ -3\end{array}\right]$.
(a) Show that the set $\beta=\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for R^{3}.
(b) Express x as a linear combination of the elements in β.
18. Suppose $\beta=\left\{\left[\begin{array}{c}3 \\ -1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}-5 \\ 9 \\ -9 \\ 3\end{array}\right]\right\}$ is a basis for a subspace W. Use Gram-Schmidt to construct an orthonormal basis for W.

